
J. Appl. Maths Me& Vol. 56, No. 4, pp. W-.583,1992 O&%-8928/92 $24.00 i .oO 
Printed in Great Britain. 0 1993 Pergamon Press Ltd 

MULTIVALUED SYNTHESIS FOR ONE CLASS OF 
CONTROLLABLE SYSTEMS-t 

V. YA. DZHAFAROV 

Baku 

(Received 28 March 1991) 

The problem of minimizing the terminal functional on the trajectories of a controllable system which is 

described by a differential inclusion is considered. A relation is derived which is a function of the optimal 
result. Multivalued synthesis in the form of a differential inclusion is defined, all the solutions of which are 

optima! trajectories. A method of approximating the optimal trajectories is indicated. 

CONSIDER a controllable system whose behaviour is described by the following differential inclusion: 

x eF(r,x), PER”. IE 7’= [O,B] 

We will assume that 

(1) 

1. F(t, x) is a convex compactum for all (t, x) E T x R”. 

2. The multivalued transformation (t, x) + F((t, x) is continuous with respect to (I, x) and satisfies the local 
Lipschitz condition with respect to x, i.e. 

~4F(f.~j, F(f,xfj -+0 as (z,Y).-+ (1. x) 

a(F(t. X, ),‘F(f, Xv)) C; h(L) It X1 -‘X2 II; (If, Xi) EL, ir 1, 2 

where LC TX R” is any bounded region, /[.I/ is the Euclidean norm, h(L) is a constant and a( I, *) is the 
Hausdorff spacing. 

3. A constant c> 0 exists such that 

maxfiifit: fGF(r. x)1 d: cfi + 11 x it) 

Henceforth we will assume that conditions l-3 are satisfied. 
We mean by the solution of system (1) the absolutely continuous function x(t) which satisfies Eq. (1) almost 

everywhere. 
Suppose that in the solutions of system (1) it is required to minimize the functional 

0 = o(x(efj (2) 

where IT: R”-+ R’ is a function which satisfies the local Lipschitz condition. We will denote by Xl (t,, x, ) the set 
of all solutions of Eq. (1) with initia1 conditions n (8,) = x,. SupposefE R”. We will assume that 

c(tL,x,)= min{og(@)j: x( . ) E X, (f;,X,)\ 

a,cfr.x)lVf=liminfIc(r+S,x+sf)-c(r.x)]6-’ 
s-to+ 

F” (1. x) = I,, E FQ, x1: min 
)CEF(CX) 

a,c(r, x) 1 Cn= a,c(r. xl.1 cf,)) 

S={(f,x)~?‘xR~: Fe (I, xf is not convex 

The function c(t,x) is called the function of the optimal result (FOR) for problem (l), (2). The trajectory 
x~(~>EX~(t+,x*) is said to be optimal for the initial position (t,,n*) if c(t,,n*) = crfxO(6)]. It can be shown 
that the function c(t, x) satisfies the local Lipschitz condition with respect to (i, x), i.e. 

Ilc(~*..~*j’~(~,.x,jIICh(L)III, -rt,l+llx, -X2111, (ff>Xf)EL, i-l,2 
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where LC TX R” is any bounded region and A(L) is a constant. Hence, the number a*c(t,x) 1 (f) is always 
finite. 

We will denote by Lip the set of all functions o: T x RR+ R’ which satisfy the local Lipschitz condition. Using 
well-known results [l-5] it can be shown that the following theorem holds. 

Theorem 1. In order that the function c( .) E Lip should be a function of the optimal result for problem (l), 
(2) it is necessary and sufficient that the following conditions be satisfied: 

m in a,c(r.x)~(n=o, c(f). x)= u(x), V(t, X)E [0,0) x R” (3) 
feF(r. x) 

Relation (3) replaces Bellman’s equation for problem (l), (2). 
We will now define the multivalued synthesis for problem (l), (2) and consider the problems of its existence. 

Definition 1. Suppose (t, x)+ G(t, x) CR” is a compact-valued multivalued transformation semi-continuous 
from above. We will call it a multivalued synthesis for the control problem (l), (2) if the set of solutions of the 
equation 

x’ECft.x), x(t,)=x,, V(t,.x,)ETxR” 

is non-empty and all the solutions of Eq. (4) are optimal trajectories for the initial position (t*, x*) 
We will assume that the following condition is satisfied. 

(4) 

Condition I. For the FOR see (t, x) the function (t, x) + a*c(t, x) 1 (f) is semi-continuous from below at each 
point (t, x) E [0, 0) x R” for any fE R”. 

Condition 1 is satisfied, for example, if the function u is continuously differentiable, while the right-hand side 
of Eq. (1) has the form F(t,x) = co{f(t, x, u): UEP}, where co is a convex hull, P is compactum, and the 
function f is continuous over the set of variables and is continuously differentiable with respect to x. 

When Condition 1 is satisfied the multivalued transformation (t, x)-+F,(t, x) is semi-continuous from above. 

Infact,suppose(tk,xk)~(t,.x*),fk-?f,,fkEF (t o k, xk). We will show that f, E F”(t*, x*). By the definition of 
F0 and by virtue of conditions (3) we have 

a,cfrk,xk) I cfk)= 0 (5) 

For each (t, x) the function f+ d*c(t, x) 1 (f) satisfies the Lipschitz condition. Hence, taking Condition 1 into 
account as well as relations (3) and (5) we have d.+c(t*, x*) 1 (f,) = 0. Consequently f* E Fo(t*, x*). 

For the FOR c(t, x) we will denote by dc(t*, xJ the set of Clarke subgradients of the function c(t, x) at the 
point (t*, x*). 

Theorem 1. Suppose Condition 1 is satisfied and also 

z E a$$ r~:r,“;f, x) 
(z,(l,f))~O, vkx)~[O,~)XR” 

Then the transformation (t, x)+coF,(t, x) is a multivalued synthesis for problem (l), (2). 

(6) 

Proof. When Condition 1 is satisfied the following equation holds: 

a,cO,x)I(f)=min((z,(l,n): zfac(t,x)l 

Suppose (t,, x+) E [0, 0) x R”. Consider the differential inclusion 

(7) 

xEcoF@(t.X), x(t,)=x. (8) 

The right-hand side of the first relation in (8) is convex, compact-valued and semi-continuous from above 
with respect to (t, x). Hence, using well-known theorems of existence [4], we conclude that Eq. (8) has a 
solution which satisfies the condition x(t,) = x,. For any solution x(t) of Eq. (8) the function p(t) = c(t, x(t)) 
satisfies the Lipschitz condition. Hence, by Rademacher’s theorem it is differentiable almost everywhere. For 
almost all t E [t,, 01, taking into account the theorem on the minimax, we have 

C(t) = a,c(r, x(r)) I (x’(t)) < mx a .cu, x)) 1 c.0 = 
fE cnF, (c XV)) fECo?y&)) sE$,,x(t))(Z9(19f))= 

a 
~~~~,~~t~~ f~T:t,~(tjj 

(Z, (l,f)) < 0 
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Consequently, a11 the trajectories of Eq. (8) are optimal. 
Theorem 1 is applicable, generally speaking, in cases when the surface of non-convexity S of the set &(t, x) 

is a ~ncentrating surface for the system x”Ecol;b(t, x) (in Isaac& te~inology (61). When this surface is a 
scattering surface, inequality (6), generally speaking, will not be satisfied. 

For example, for the system 

X;=kt, x; =:, IUWl, t=[O,l], e(x,,l,)=-~X,)a (9) 

We will have c(t, x) = -[K+ %.(t- 1)‘12, K = K(t, X) = it + (I - t)xa, where the plus sign is taken when K>O, 
and the minus sign is taken when K < 0. Therefore, 

We can verify that for this example inequality (6) is violated on the surface I( = 0, 
We will introduce the following condition. 

Condition 2. For each (t,, x*) E TX R”, among the solutions of Eq. (8) a solution x(t) will exist such that the 
set {tE[r*, @]: (t, x(t))~S} has a zero Lebesque measure. 

It can be verified that the solution x(t) of Eq. (6), which satisfies Condition 2, is also a solution of the 
equation x0 E Fa(t, x ) and all the solutions of the equation x0 E I;‘(t, x) are optimal for all initial positions (t+, 
xJ. The following theorem holds. 

Theorem 2. Suppose Conditions 1 and 2 are satisfied. Then the transformation (t, x)-+Fc(t, x) is a 
multivalued synthesis for probIem (l), (2). 

Theorem 2 is applicable in cases when S is a scattering surface. Condition 2 is satisfied for example (9). 
Hence, the transformation (t, x)+&(t, x) constructed is a multivalued synthesis. 

It can be seen from Theorems 1 and 2 that for the FOR c(f, x) for finding optimal trajectories, the problem of 
approximating the solutions of the equation PfcoF,,(t, x) is of interest. We will indicate one method of 
making this approximation. Suppose (“*, TX*) E [0, 0) X R”, A = {‘* = TO< rr <. . . < rN = O} is a splitting of the 
section [E.+, @I, 5= {&, St,. . . , &,-1 }, where & is an n-dimensional vector for all i. We will put 

diam A t max&+ 1 - ti), I 4‘ I = maxi I f‘i 11 

Consider the step-by-step differential inclusion 

X’(t) E F,(ri, x(q) + El), q < t < ri+lr x(t.1 =x. (10) 

We will denote by X&t*, xJ the set of absolutely continuous function x( . ): [t,, f?]+ R” such that 

where ok is an absolutely continuous solution of Eq, (10) for the sequences Ak, $, such that 

l%-ro. diZUilL\&=Lim&_*Ool~kl=O 

The following assertion holds: for all (t,, x+) E [0, 6) x R” the bundle Xz(t,, xJ is identical with the bundle 
of all the solutions of Eq. (8). Hence, all the solutions of Eq. (8) are approximated by the solutions of the 
step-by-step differential inclusion (10). 
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